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A multi-component plasma model of a high-TC 
superconductor 
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National University, Canberra, ACT 2601, Australia 
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Abstract. It is shown that the occurrence of negative dispersion in the ion plasma branch of 
a two-component plasma of electrons and ions can lead to a sharp increase in the binding 
energy of Cooper pairs. The analysis is generalised to a multi-component plasma with many 
ionic species, and the applicability of this model to high-T, superconducting materials is 
discussed. 

Within the framework of conventional theories the origin of the rather strong attractive 
interaction between the electrons on the Fermi surface forming strongly bound Cooper 
pairs in high-T, superconductors has been attributed to mediation of many types of 
excitations. There are well known models (Ginzburg and Kirzhnits 1982) in which the 
attractive part of the electron-electron interaction arises from exchange of ion-acoustic 
plasmons. The object of this note is to consider the electron-electron interaction in a 
multi-component plasma consisting of electrons and ions, and show that under certain 
conditions affecting the dispersions of the ion plasma branches, a substantial increase in 
the energy gap and hence in the transition temperature can be expected. 

Let us first consider a two-component plasma. In terms of its dielectric function 
&(q, U ) ,  the electron-electron interaction matrix element between the states lk) and Ik’) 
corresponding to the energies E(k)  and E ( k ’ )  is 

v k k l  = 4m2/q2&(q ,  W k V )  (1) 
with q = k - k’ and w k k ’  = ( E ( k )  - E ( k ’ ) ) / h .  &(q, w )  can be evaluated using the hydro- 
dynamic model for long-wave longitudinal plasma oscillations in the medium, in the 
form (Montgomery 1971) 

&(q, w )  = 1 - w : / ( w 2  - p:q*)  - w t / ( w *  - Pfq2)  ( 2 )  
where we = d(4nn,e2/m),  and wi = d(o:Zm/M) are the electron and ion plasma 
frequencies, ne is the electron density, m and M are the electron and ion masses, Z is 
the valency of the ion and Pe and PI respectively are the corresponding dispersion 
parameters. Pe is proportional to vF, the Fermi velocity, and hence /3: > 0. Pf of the ion 
plasma branch is governed by the non-Coulombic part of the interaction between two 
ions, i.e. the difference between the total and the direct Coulomb interactions between 
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them. The lattice structure of the solid, as well as the transverse phonons in the system, 
arise from this interaction. We shall simplify the problem here, considering only the 
longitudinal plasmons associated with the ions. Unlike /3%, there is no a priori reason 
for /3; to be positive. The ion plasma branch could be like the LO phonons in an ionic 
crystal which have negative dispersion at long wavelengths, i.e. /3f < 0, if the non- 
Coulombic ion-ion interactions so demand. In fact, for a Coulomb lattice the LO plasma 
branch is known to have negative dispersion (Pines 1963). The non-Coulombic ion-ion 
interactions can accentuate this effect. The dominant non-Coulombic interaction would 
be of the van der Waals type, the strength of which is determined by the polarisability 
of the ions (Rehr et a1 1975, Mahanty and Taylor 1978, Maggs and Ashcroft 1987). 

There will be two coupled plasmon modes whose dispersion relations are obtained 
from the equation E ( q ,  U )  = 0. These modes (in terms of the electron and ion plasma 
frequency branches oz(q) = U :  + /3:q2 and wf(q) = o f  + /3fq2) are given by 

4 112 d47) = +{w2(4) + d ( q )  + [ (w%4) + d ( 4 ) ) 2  - 4P:/3x4;42 + 4 > I  1 
= U: + w ;  + [(W2/3Z + U!/3f)/(W: + of)]  (3a) 

w m  = H d ( 4 )  + d ( q )  - [ (w : (q )  + d ( q ) ) *  - 4/3e/31 (404 + 4 11 1 
= u:q* (3b) 

(4) u 2 -  2 2 2  

2 2 2 2  4 1 1 2  

where the second equality in each case is the form in the long-wave limit, and 

420 = d / B :  + w,'/87. s - B e i n 1  s 0 / < d  + 4. 
us is the sound velocity corresponding to the ion-acoustic branch. When Pf is negative, 
for stability of the solid us must be real, or (/3fqi) must be positive. This condition 
constrains the negative /3f to satisfy the inequality 1/3? 1 < /3',wf/wi. For 1/3? 1 = 0, we get 
the well known result for the sound velocity with an undispersed ion plasma branch 
(de Gennes 1966, Kubo and Nagamiya 1969), u i  = /3:of/o; = u;(Zm/M). 

The effect of negative dispersion in the ion plasma branch on electron-electron 
interaction is substantial, and this aspect will be discussed in detail hereafter. Equation 
(1) can be written as 

vkk' = (4ne2 /q2) (ozkr  - /3242>(U$k' + i/3?142>/(W:k' - og(q))(wzk' - u i ( q ) ) .  ( 5 )  

Since wA is of the order of the Debye frequency wD, the interaction is attractive in the 
region lwkkr1 < U,,, as in the conventional theory. The zero-temperature gap equation 
is (Schrieffer 1964) 

V k k ' A ( k r )  A (k )  = -$E 
k' d ( E 2 ( k ' )  + A 2 ( k r ) )  

EF is the Fermi energy. Taking the electron pair 
Iwkk,I < OD, v k k r  has the approximate form (for 4;  

E(k)  = h2k2/2m - E F .  (6) 

on the Fermi surface, in the range 
< O), 

( K T F ) - ~  is the Thomas-Fermi screening length. In real space the pair potential will be 
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oscillatory for q i  < 0. This feature is reminiscent of a model.due to Kohn and Luttinger 
(1965), where the formation of the Cooper pair occurs through the attractive regions of 
the pair potential obtained through a dielectric function that has Friedel oscillations due 
to the sharpness of the Fermi surface. The oscillations obtained from (7) ,  however, are 
much stronger than in the latter situation. 

At this stage Vkk, of (7) can be compared with that in other models, such as those 
involving the electrons being coupled to LO phonons (Tachiki and Takahashi 1988, 
Dolgov eta1 1987). In the latter models also, there could be considerable enhancement 
in Vkkr, But the mechanism proposed in this note is simpler in concept, and depends only 
on the details of the inter-ionic forces. 

The gap equation can be simplified, by writing the k’-integral as integrals over q and 
E as is customary in such problems (Scalapino 1969), to the form 

with 

and N(0)  is the density of states at the Fermi surface. Here A is taken as independent of 
k. The form of Z in (9) is obtained from the small-q form of E ( q ,  0), and effects such as 
local field corrections at large q are not taken into consideration here. We believe that 
this approximation will not substantially alter the following deductions. 

For Zto be negative, which is the condition for the existence of the non-trivial solution 
of the gap equation, K~ must satisfy the inequality K~ > f i k ,  , and in this region there 
is a logarithmic singularity at K~ = 2kF. The solution of the gap equation then becomes 

A = hoD/sinh(k;/2N(0)?ce2 IZI). (10) 

Here the value ne2)Zl/k: is like the coupling constant of BCS theory, and (10) reduces to 
the BCS result when this value is small. However, depending on the dispersion of the ion 
plasma branch, IZl can be large and thus the possibility of A being of the order of h o ,  
emerges. 

Equation (4) for us can be written as (with wi Q U,) 

where uo has been defined earlier. The condition for lattice stability is 0 < u i  < U ; ,  and 
this restricts the value of 

In terms of the parameter x = u i / u i ,  I as a function of x is given in figure 1. It is clear 
that a non-trivial solution for A in (10) can exist only for values of x in the range 
xo < x < 1, where xo = 2k$/(2k$ + K $ ~ ) .  From (lo), A/ho, as a function of x is given 
in figure 2. For these calculations we have taken rs = 10 (rs = ( 3 / 4 ? ~ n ~ ) ~ / ~ )  corresponding 
to the electron density = 1.6 x loz1 cm-3 (Onyszkiewicz et a1 1988). 

Although the value of A is unrealistic near the singularity of I ,  it is possible to get 
values of A of the order of hoD in a range of values of x, and hence of IPf 1. 

Since high- T, superconductors contain many ionic species, the above analysis in 
terms of a two-component plasma model must be generalised to a multi-component 
plasma model to be applicable to real systems. This can be done as follows. 

1. 
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Figure 1. Ifrom (9) as a function of x = V2s/V20 for 
r, = 10. 

Figure 2. A (in units of (TimD)) as a function of 
x = v2s/v20 for rs = IO. 

The dielectric function of a multi-component plasma is 

where v = 1 is the electron plasma, and v = 2, 3, . . . , p  represent the various ionic 
species, 0, and Pu are respectively the plasma frequency and the dispersion parameter 
of the vth ion species. The ion-acoustic branch can be obtained from the equation 
E ( q ,  U )  = 0 in the form 

W i ( 4 )  = d q 2  (13) 
P P P P P 

4 = u = l  IC P’, - (E  u = l  o:P:)/E v = l  U’, = u = 2  IC P’, + P ? p 2  u : ) /u :  

P 

= U {  + 2 p: 

with 

The last form for U ‘ S  in (14) follows from the fact that U :  % U’,, for v = 2 , .  . . , p .  
Equation (15) can be written as 

where 2, and M u  are the valency and mass of the vth species of ion, nu is its density, and 
charge neutrality of the system implies 

P 

n1 = C, nUzv. 
u = 2  

We also have 

If some of the ion plasma branches have negative dispersion, i.e. P t  < 0 for some v ,  
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and those IP: I are small, the possibility arises of q i  becoming negative. One can then 
define 

where the branches with negative dispersion have been separated into the summation 
over ,U. Also, for lattice stability, > 0 and this constraints the P t  to satisfy the 
inequality 

P 

u = 2  

The sound velocity us in the medium is less than uo if the sum in (19) is negative. 
The subsequent analysis is identical to that given in equations (6) to (10) with K~ 

defined as in (18). The parameter x ,  which contains all the information about dispersion 
of the ion plasma branch in the two-component case, is not useful in the multi-component 
system, since it will not identify which ion plasma branches have negative dispersion. 
But A as a function of K~ will be exactly as in the two-component case. Since the mass 
dependence of u o  is averaged over the ions in the manner shown in (16), the isotope 
effect associated with any particular species will be small, if not negligible. 

Although the oxide superconductors are structurally anisotropic and are considered 
as layered materials, several thermal and electrical measurements suggest that the 
superconductivity is bulk (three-dimensional) in nature (Inderhees et a1 1988, Golden- 
feld et a1 1988). Recently Gersten (1988) has made an analysis using a hydrodynamical 
approach similar to ours in a two-dimensional model. That would certainly be necessary 
if the three-dimensional models prove inadequate. 

The realisation of high-T, superconductivity in our model depends on the particular 
form of &(q, 0) arising out of negative (and small) dispersion of the ion plasma branch 
in the two-component case, and a net negative dispersion in those branches in the multi- 
component case. Other processes contributing to E ( q ,  0) which give it a similar structure 
would obviously contribute to high-T, superconductivity. A b  initio evaluation of the 
dispersion of an individual ion plasma branch in a typical high- T, superconducting 
material requires detailed information on the non-Coulombic part of the ion-ion inter- 
action in the sublattice of that ionic species. This is not attempted in this paper. 

A direct consequence of this negative dispersion in the ion plasma branches would 
be a lowering of the longitudinal sound velocity from uo to us .  Such a reduction of sound 
velocity was considered earlier by Kulik (1965) as a criterion for superconductivity. 
From a recent measurement (Jericho et a1 1988), sound velocity in Y B a 2 C ~ 3 0 7 - 6  has 
been found to be very low compared with that in metallic superconductors. The electron 
density in Y B a 2 C ~ 3 0 7 - 6  is =(l-2) x 1021 ~ m - ~ ,  corresponding to rs = 10. From this we 
obtain u o  = 2 X lo6 cm s-l (by taking M as oxygen mass and m as the bare electron 
mass). The observed sound velocity us -‘I 2.1 x lo5 cm s-l .  This reduction of the sound 
velocity is perhaps an indication of net negative dispersion in the ion plasma branches. 

Note added in proof. Our object in this paper was to examine the crucial role of possible negative dispersion 
in the ion plasma branches on the screening of electron-electron interaction. However, a number of papers 
have appeared on the bulk and layered (electron) plasmons believed to be responsible for the high-T, 
superconductivity. See, for example, Kresin (1987), Ruvalds (1987), Ashkenazi et al(1987), Griffin (1988) 
and others. Recently Kresin and Morawitz (1989) have considered a combined phonon-plasmon mechanism 
in the Eliasberg formalism. 
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